2.4. Response rates by education categories and incentive groups (Figure 1)
The following barplots were createt using the “ggplot” package.
# ggplot
# edu Education
toPlot <-
WaveOne[WaveOne$id.bru==1,
c("rr", "edu", "Pumavers")] %$%
#mutate(bin = cut(edu, pretty(edu, 20))) %$%
table(edu, rr, Pumavers) %>%
as.data.frame() %>%
mutate(plotVal = ifelse(rr == "Response",-1 * (Freq / table(WaveOne$rr)[["Response"]]),
Freq / table(WaveOne$rr)[["Non-Response"]]))
levels(toPlot$rr)[1] <- "Nonresponse"
levels(toPlot$Pumavers) <- c("Brochure",
"2€ token",
"5€ token",
"Voucher")
toPlot %>%
ggplot(aes(edu, y = Freq)) +
geom_bar(aes(fill = rr), position = "fill", stat = "identity") +
coord_flip() +
geom_hline(aes(yintercept = 0.247,
linetype = "Overall Response Rate (24.7%)"),
show.legend = TRUE) +
scale_y_continuous(labels = scales::percent_format(accuracy = 1),
breaks = c(0,0.2, 0.4, 0.6, 0.8,1)) +
facet_grid(. ~ Pumavers) +
scale_x_discrete(
labels = function(x)
str_wrap(x, width = 30)
) +
labs(y = "", x = "Highest Education") +
scale_fill_manual(values = c("grey", "grey50")) +
guides(fill = guide_legend(title = NULL,
override.aes = list(linetype = 0))) +
scale_linetype_manual(" ", values = 1)+
theme_minimal() +
theme(legend.position = "top") +
theme(text=element_text(size=12#, family="serif"
))