Introduction
Table 3 adds the option of nonresponse since the composition of the sampling frames differ across incentive groups.
Education
# Table with absolute frequencies for response
edu_rr <- WaveOne %>%
filter(is.na(PUMA1)==FALSE) %>%
filter(valid==1) %>%
with(table(edu,Pumavers))
# Table with absolute frequencies for nonresponse
edu_nr <- WaveOne %>%
filter(is.na(PUMA1)==FALSE) %>%
filter(valid==0) %>%
with(table(edu,Pumavers))
# Combine tables
for (i in 1:ncol(edu_rr)){
sum_perc <- cbind(edu_nr[,i],edu_rr[,i]) %>%
prop.table(1)
if (i==1){
edu_tab <- data.frame(
bro_nr = paste0(edu_nr[,i],
" (",
scales::percent(sum_perc[,1], accuracy = 0.1),
")"),
bro_rr = paste0(edu_rr[,i],
" (",
scales::percent(sum_perc[,2], accuracy = 0.1),
")")
)
} else {
j <- (i*2)-1
edu_tab[,j] <- paste0(edu_nr[,i],
" (",
scales::percent(sum_perc[,1], accuracy = 0.1),
")")
edu_tab[,j+1] <- paste0(edu_rr[,i],
" (",
scales::percent(sum_perc[,2], accuracy = 0.1),
")")
}
}
# Print dataframe
cbind(levels(WaveOne$edu),
edu_tab) %>%
setNames(c("Labels",
rep(c("Nonresponse","Response"),4))) %>%
kable("html") %>%
kable_styling("striped") %>%
column_spec(1, width = "30em") %>%
add_header_above(c(" " = 1,
"Brochure" = 2,
"2€ token" = 2,
"5€ token" = 2,
"Voucher" = 2))
|
Brochure |
2€ token |
5€ token |
Voucher |
Labels |
Nonresponse |
Response |
Nonresponse |
Response |
Nonresponse |
Response |
Nonresponse |
Response |
Max. compulsory schooling |
127 (98.4%) |
2 (1.6%) |
132 (94.3%) |
8 (5.7%) |
147 (91.9%) |
13 (8.1%) |
131 (91.6%) |
12 (8.4%) |
Apprenticeship |
361 (89.8%) |
41 (10.2%) |
314 (80.7%) |
75 (19.3%) |
308 (80.6%) |
74 (19.4%) |
318 (79.1%) |
84 (20.9%) |
Vocational or commercial school |
109 (82.0%) |
24 (18.0%) |
92 (83.6%) |
18 (16.4%) |
85 (66.4%) |
43 (33.6%) |
81 (79.4%) |
21 (20.6%) |
Matura |
146 (76.0%) |
46 (24.0%) |
89 (56.3%) |
69 (43.7%) |
99 (61.1%) |
63 (38.9%) |
83 (58.5%) |
59 (41.5%) |
Higher degree after Matura |
18 (64.3%) |
10 (35.7%) |
15 (53.6%) |
13 (46.4%) |
8 (40.0%) |
12 (60.0%) |
18 (60.0%) |
12 (40.0%) |
University degree |
87 (65.4%) |
46 (34.6%) |
77 (52.0%) |
71 (48.0%) |
67 (50.8%) |
65 (49.2%) |
63 (47.7%) |
69 (52.3%) |
Occupational position
# Table with absolute frequencies for response
job_rr <- WaveOne %>%
filter(is.na(PUMA1)==FALSE) %>%
filter(valid==1) %>%
with(table(job,Pumavers))
# Table with absolute frequencies for nonresponse
job_nr <- WaveOne %>%
filter(is.na(PUMA1)==FALSE) %>%
filter(valid==0) %>%
with(table(job,Pumavers))
# Combine tables
for (i in 1:ncol(job_rr)){
sum_perc <- cbind(job_nr[,i],job_rr[,i]) %>%
prop.table(1)
if (i==1){
job_tab <- data.frame(
bro_nr = paste0(job_nr[,i],
" (",
scales::percent(sum_perc[,1], accuracy = 0.1),
")"),
bro_rr = paste0(job_rr[,i],
" (",
scales::percent(sum_perc[,2], accuracy = 0.1),
")")
)
} else {
j <- (i*2)-1
job_tab[,j] <- paste0(job_nr[,i],
" (",
scales::percent(sum_perc[,1], accuracy = 0.1),
")")
job_tab[,j+1] <- paste0(job_rr[,i],
" (",
scales::percent(sum_perc[,2], accuracy = 0.1),
")")
}
}
# Print dataframe
cbind(levels(WaveOne$job),
job_tab) %>%
setNames(c("Labels",
rep(c("Nonresponse","Response"),4))) %>%
kable("html") %>%
kable_styling("striped") %>%
column_spec(1, width = "30em") %>%
add_header_above(c(" " = 1,
"Brochure" = 2,
"2€ token" = 2,
"5€ token" = 2,
"Voucher" = 2))
|
Brochure |
2€ token |
5€ token |
Voucher |
Labels |
Nonresponse |
Response |
Nonresponse |
Response |
Nonresponse |
Response |
Nonresponse |
Response |
Clerk |
292 (77.2%) |
86 (22.8%) |
233 (65.4%) |
123 (34.6%) |
229 (63.3%) |
133 (36.7%) |
211 (62.4%) |
127 (37.6%) |
Worker |
145 (96.7%) |
5 (3.3%) |
137 (84.6%) |
25 (15.4%) |
128 (86.5%) |
20 (13.5%) |
128 (86.5%) |
20 (13.5%) |
Civil servant |
33 (63.5%) |
19 (36.5%) |
27 (50.9%) |
26 (49.1%) |
20 (47.6%) |
22 (52.4%) |
21 (52.5%) |
19 (47.5%) |
Contract agent |
40 (78.4%) |
11 (21.6%) |
30 (69.8%) |
13 (30.2%) |
13 (48.1%) |
14 (51.9%) |
25 (50.0%) |
25 (50.0%) |
Pensioner |
185 (85.3%) |
32 (14.7%) |
175 (81.8%) |
39 (18.2%) |
199 (85.0%) |
35 (15.0%) |
185 (85.3%) |
32 (14.7%) |
Unemployed (inactive) |
140 (85.4%) |
24 (14.6%) |
107 (75.9%) |
34 (24.1%) |
120 (74.1%) |
42 (25.9%) |
119 (74.8%) |
40 (25.2%) |
Self-employed |
83 (85.6%) |
14 (14.4%) |
71 (76.3%) |
22 (23.7%) |
59 (67.8%) |
28 (32.2%) |
68 (77.3%) |
20 (22.7%) |