2.2. Distributions within the incentive groups (Table 2)


Introduction

In Table 2, the overall response rates are compared within the incentive group samples. Therefore the three variable dimensions “Education”, “Occupational position”, and “Personal income” (including all their single items) are being taken into account.

Education

# Table with absolute frequencies
t1 <- WaveOne %>%
  filter(rr=="Response") %>%
  with(table(edu,Pumavers)) %>%
  vcd::mar_table() 

# Table with relative frequencies
t2 <- WaveOne %>%
  filter(rr=="Response") %>%
  with(table(edu,Pumavers)) %>%
  cbind(rowSums(.)) %>%
  prop.table(2) %>%
  vcd::mar_table()

# Combine both tables
paste0(t1, " (", scales::percent(t2[,1:5], accuracy = 0.1), ")") %>%
  matrix(ncol = 5) %>%
  cbind(c(levels(WaveOne$edu),
          "Total"
  ),.) %>%
  as.data.frame() %>%
  setNames(c("Answer",
             "Brochure",
             "2€ token",
             "5€ token",
             "Voucher",
             "Total")) %>%
  kable("html") %>%
  kable_styling("striped") %>%
  column_spec(1, width = "30em")
Answer Brochure 2€ token 5€ token Voucher Total
Max. compulsory schooling 2 (1.2%) 8 (3.2%) 13 (4.9%) 11 (4.4%) 34 (3.7%)
Apprenticeship 39 (23.5%) 73 (29.3%) 74 (27.7%) 79 (31.9%) 265 (28.5%)
Vocational or commercial school 23 (13.9%) 17 (6.8%) 42 (15.7%) 21 (8.5%) 103 (11.1%)
Matura 46 (27.7%) 68 (27.3%) 63 (23.6%) 59 (23.8%) 236 (25.4%)
Higher degree after Matura 10 (6.0%) 12 (4.8%) 11 (4.1%) 12 (4.8%) 45 (4.8%)
University degree 46 (27.7%) 71 (28.5%) 64 (24.0%) 66 (26.6%) 247 (26.6%)
Total 166 (100.0%) 249 (100.0%) 267 (100.0%) 248 (100.0%) 930 (100.0%)

Occupational position

# Table with absolute frequencies
t1 <- WaveOne %>%
  filter(rr=="Response") %>%
  with(table(job,Pumavers)) %>%
  vcd::mar_table() 

# Table with relative frequencies
t2 <- WaveOne %>%
  filter(rr=="Response") %>%
  with(table(job,Pumavers)) %>%
  cbind(rowSums(.)) %>%
  prop.table(2) %>%
  vcd::mar_table()

# Combine both tables
paste0(t1, " (", scales::percent(t2[,1:5], accuracy = 0.1), ")") %>%
  matrix(ncol = 5) %>%
  cbind(c(levels(WaveOne$job),
          "Total"
  ),.) %>%
  as.data.frame() %>%
  setNames(c("Answer",
             "Brochure",
             "2€ token",
             "5€ token",
             "Voucher",
             "Total")) %>%
  kable("html") %>%
  kable_styling("striped") %>%
  column_spec(1, width = "30em")
Answer Brochure 2€ token 5€ token Voucher Total
Clerk 84 (44.7%) 120 (43.5%) 132 (45.4%) 123 (44.9%) 459 (44.6%)
Worker 5 (2.7%) 24 (8.7%) 20 (6.9%) 18 (6.6%) 67 (6.5%)
Civil servant 19 (10.1%) 26 (9.4%) 22 (7.6%) 18 (6.6%) 85 (8.3%)
Contract agent 11 (5.9%) 13 (4.7%) 14 (4.8%) 25 (9.1%) 63 (6.1%)
Pensioner 31 (16.5%) 38 (13.8%) 34 (11.7%) 31 (11.3%) 134 (13.0%)
Unemployed (inactive) 24 (12.8%) 34 (12.3%) 42 (14.4%) 39 (14.2%) 139 (13.5%)
Self-employed 14 (7.4%) 21 (7.6%) 27 (9.3%) 20 (7.3%) 82 (8.0%)
Total 188 (100.0%) 276 (100.0%) 291 (100.0%) 274 (100.0%) 1029 (100.0%)

Personal income

# Table with absolute frequencies
t1 <- WaveOne %>%
  filter(rr=="Response") %>%
  with(table(inc,Pumavers)) %>%
  vcd::mar_table() 

# Table with relative frequencies
t2 <- WaveOne %>%
  filter(rr=="Response") %>%
  with(table(inc,Pumavers)) %>%
  cbind(rowSums(.)) %>%
  prop.table(2) %>%
  vcd::mar_table()

# Combine both tables
paste0(t1, " (", scales::percent(t2[,1:5], accuracy = 0.1), ")") %>%
  matrix(ncol = 5) %>%
  cbind(c(levels(WaveOne$inc),
          "Total"
  ),.) %>%
  as.data.frame() %>%
  setNames(c("Answer",
             "Brochure",
             "2€ token",
             "5€ token",
             "Voucher",
             "Total")) %>%
  kable("html") %>%
  kable_styling("striped") %>%
  column_spec(1, width = "30em")
Answer Brochure 2€ token 5€ token Voucher Total
up to 1.300€ 43 (24.3%) 68 (25.7%) 65 (23.2%) 64 (24.3%) 240 (24.4%)
1.301 to 2.500€ 48 (27.1%) 92 (34.7%) 94 (33.6%) 79 (30.0%) 313 (31.8%)
2.501 to 4.000€ 52 (29.4%) 59 (22.3%) 82 (29.3%) 69 (26.2%) 262 (26.6%)
more than 4.000€ 34 (19.2%) 46 (17.4%) 39 (13.9%) 51 (19.4%) 170 (17.3%)
Total 177 (100.0%) 265 (100.0%) 280 (100.0%) 263 (100.0%) 985 (100.0%)

Table summary

Line_s <- WaveOne %>%
  filter(rr=="Response") %>%
  dplyr::select(rr, Pumavers) %>%
  table() %>%
  cbind(rowSums(.))

line_sf <- WaveOne %>%
  filter(is.na(PUMA1)==FALSE) %>%
  dplyr::select(Pumavers) %>%
  table() %>%
  c(sum(.))

# Combine both tables
paste0(t1, " (", scales::percent(t2[,1:5], accuracy = 0.1), ")") %>%
  matrix(ncol = 5) %>%
  cbind(c(levels(WaveOne$inc),
          "Total"
  ),.) %>%
  as.data.frame() %>%
  setNames(c("Answer",
             "Brochure",
             "2€ token",
             "5€ token",
             "Voucher",
             "Total")) %>%
  kable("html") %>%
  kable_styling("striped") %>%
  column_spec(1, width = "30em")
Brochure 2€ token 5€ token Voucher Total
Sample 188 276 291 274 1029
Sampling frame 1120 1063 1064 1043 4290
Response rate 16.8% 26.0% 27.3% 26.3% 24.0%
Previous
Next