1.3. Education
Introduction
For the measurement of education a scale from the micro-census data containing 11 categories (ranging from “no compulsory schooling” to “doctorate”) was used. For the use in the analysis the scale was then collapsed into the categories “maximum compulsory schoolin”, “apprenticeship”, “vocational or commercial school”, “Matura”, “university degree” and “alternative higher degree after the Matura”.
Statistik Austria provides a reference of the Austrian education system to ISCED 2011.
Original education variable
table(WaveOne$SD7) %>%
as.data.frame() %>%
setNames(c("Response", "Frequency")) %>%
kable("html") %>%
kable_styling(bootstrap_options = c("striped", "hover",
"condensed", "responsive"),
full_width = F, position = "center")
Response | Frequency |
---|---|
kein Pflichtschulabschluss | 6735 |
Pflichtschulabschluss | 7958 |
Lehre (Lehrabschlussprüfung) | 12577 |
BMS (Fach- oder handelsschule <2 Jahre, 2 Jahre und länger) | 4291 |
AHS mit Matura | 1948 |
BHS mit Matura | 3079 |
Hochschulverwandte Lehranstalt (Akademien) | 600 |
Kolleg | 104 |
Bachelor | 736 |
Magister/Master/DI/FH | 2528 |
Doktor/PhD | 754 |
Andere | 2723 |
Recoding into ISCED 2011 like scale
Starting with an empty variable:
WaveOne$edu <- NA
Summarizing the lowest two levels to Max. compulsory schooling
:
WaveOne$edu[WaveOne$SD7 %in% levels(WaveOne$SD7)[1:2]] <- "Max. compulsory schooling"
Copy the next two levels without change into new education variable:
WaveOne$edu[WaveOne$SD7 %in% levels(WaveOne$SD7)[3]] <- "Apprenticeship"
WaveOne$edu[WaveOne$SD7 %in% levels(WaveOne$SD7)[4]] <- "Vocational or commercial school"
Merge all degrees similar to Matura
(high school equivalent):
WaveOne$edu[WaveOne$SD7 %in% levels(WaveOne$SD7)[5:6]] <- "Matura"
Summarize degrees above Matura and below university:
WaveOne$edu[WaveOne$SD7 %in% levels(WaveOne$SD7)[7:8]] <- "Higher degree after Matura"
Combine all tertiary degrees into University degree
:
WaveOne$edu[WaveOne$SD7 %in% levels(WaveOne$SD7)[9:11]] <- "University degree"
Define other degrees as missings:
WaveOne$edu[WaveOne$SD7 %in% levels(WaveOne$SD7)[12]] <- NA
Format the variable as factors with corresponding labels:
WaveOne$edu <- factor(WaveOne$edu,
levels = c("Max. compulsory schooling",
"Apprenticeship",
"Vocational or commercial school",
"Matura",
"Higher degree after Matura",
"University degree"))
Distribution of new variable
The new variable has the following distribution: